完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Huang, Chi-Chun | |
dc.contributor.author | Lee, Hahn-Ming | |
dc.date.accessioned | 2009-08-23T04:47:21Z | |
dc.date.accessioned | 2020-05-29T06:16:20Z | - |
dc.date.available | 2009-08-23T04:47:21Z | |
dc.date.available | 2020-05-29T06:16:20Z | - |
dc.date.issued | 2006-10-13T08:34:41Z | |
dc.date.submitted | 2001-12-20 | |
dc.identifier.uri | http://dspace.fcu.edu.tw/handle/2377/1229 | - |
dc.description.abstract | In this paper, we propose a grey-based nearest neighbor approach to predict missing attribute values in an accurate manner. First, the nearest neighbors of an instance with missing attribute values are found through grey relational analysis. Accordingly, the known attribute values derived from these nearest neighbors are chosen to infer those missing. The Iris flower dataset was used to demonstrate the performance of the proposed approach. Experimental results show that our method performs better than both multiple imputation and mean substitution. | |
dc.description.sponsorship | 中國文化大學,台北市 | |
dc.format.extent | 7p. | |
dc.format.extent | 192129 bytes | |
dc.format.mimetype | application/pdf | |
dc.language.iso | zh_TW | |
dc.relation.ispartofseries | 2001 NCS會議 | |
dc.subject | missing attribute values | |
dc.subject | grey-based nearest neighbor approach | |
dc.subject | grey relational analysis | |
dc.subject | the nearest neighbor concept | |
dc.subject.other | General AI | |
dc.title | A grey-based nearest neighbor approach for predicting missing attribute values | |
分類: | 2001年 NCS 全國計算機會議 |
文件中的檔案:
檔案 | 描述 | 大小 | 格式 | |
---|---|---|---|---|
ce07ncs002001000039.pdf | 187.63 kB | Adobe PDF | 檢視/開啟 |
在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。