完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Yu-Cheng
dc.contributor.authorLai, Lien-Fu
dc.contributor.authorWu, Chao-Chin
dc.date.accessioned2011-02-18T03:28:51Z
dc.date.accessioned2020-05-18T03:10:46Z-
dc.date.available2011-02-18T03:28:51Z
dc.date.available2020-05-18T03:10:46Z-
dc.date.issued2011-02-18T03:28:51Z
dc.date.submitted2010-12-18
dc.identifier.urihttp://dspace.lib.fcu.edu.tw/handle/2377/30017-
dc.description.abstractThe Fuzzy-Go search engine develops a fuzzy ontology to capture the similarities of terms in the ontology for accomplishing the semantic search of keywords, a web crawler to gather and classify web pages, and a fuzzy search mechanism to aggregate all fuzzy factors based on their degrees of importance and degrees of satisfaction. In this paper, we apply the genetic algorithm to propose a self-adaptation approach to Fuzzy-Go search engine. For each search, the fuzzy search engine records the difference between the ordering of search results and user’s real behavior on clicking web pages. The feedbacks are gathered and analyzed to adjust the fuzzy similarities between terms in the fuzzy ontology, the domain classification of web pages, and the importance degrees of fuzzy factors. The ordering of search results can thus be improved gradually by continuous learning and adaptation.
dc.description.sponsorshipNational Cheng Kung University,Tainan
dc.format.extent6p.
dc.relation.ispartofseries2010 ICS會議
dc.subjectfuzzy search engines
dc.subjectself-adaptation
dc.subjectgenetic algorithms
dc.subject.otherArtificial Intelligence, Knowledge Discovery, and Fuzzy Systems
dc.titleA Self-Adaptation Approach to Fuzzy-Go Search Engine
分類:2010年 ICS 國際計算機會議(如需查看全文,請連結至IEEE Xplore網站)

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。