完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Yeh, Fu-Long | |
dc.contributor.author | Tang, Shyue-Ming | |
dc.contributor.author | Wang, Yue-Li | |
dc.contributor.author | Ho, Ting-Yem | |
dc.date.accessioned | 2009-06-02T06:22:00Z | |
dc.date.accessioned | 2020-05-25T06:37:40Z | - |
dc.date.available | 2009-06-02T06:22:00Z | |
dc.date.available | 2020-05-25T06:37:40Z | - |
dc.date.issued | 2006-10-25T06:07:43Z | |
dc.date.submitted | 2000-12-08 | |
dc.identifier.uri | http://dspace.lib.fcu.edu.tw/handle/2377/2488 | - |
dc.description.abstract | In a biconnected graph, a detour from a vertex u to some destination vertex s when the edge(u,v) is not available in a shortest path<u,v,....,s>,The longest detour(LD)problem is to find an edge(u,v),called the detour-critical edge, along a shortest path<r,...,u,v,...,s>,such that the removal of (u,v) may cause maximum increment of vertices and edges, respectively, in a graph , in this paper, we are concerned with the LD problem with respect to a shortest path tree of a graph,An O(m a(m,n)) time algorithm for finding a detour-critical edge in a shortest path tree is presented in this paper, where a is a functional inverse of ackermann's function | |
dc.description.sponsorship | 中正大學,嘉義縣 | |
dc.format.extent | 5p. | |
dc.format.extent | 155341 bytes | |
dc.format.mimetype | application/pdf | |
dc.language.iso | zh_TW | |
dc.relation.ispartofseries | 2000 ICS會議 | |
dc.subject | Longest detour | |
dc.subject | detour-critical edge | |
dc.subject | shortest path | |
dc.subject | biconnected graphs | |
dc.subject.other | Combinatorial Computing | |
dc.title | The longest detour problem on a shortest path tree | |
分類: | 2000年 ICS 國際計算機會議 |
文件中的檔案:
檔案 | 描述 | 大小 | 格式 | |
---|---|---|---|---|
ce07ics002000000007.pdf | 151.7 kB | Adobe PDF | 檢視/開啟 |
在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。